Beständigkeitstabellen

Die hier gegebenen Empfehlungen sollen eine Hilfe für die Auswahl der geeigneten Werkstoffe und Typen \qed geeignet sein. Eine Garantie kann grundsätzlich nicht übernommen werden, weil Funktion und Haltbarkeit der Erzeugnisse weitgehend von einer Reihe von Faktoren abhängen, auf die der Hersteller keinen Einfluß

Falls spezielle Zulassungsbestimmungen bestehen, sind diese zu beachten. Im Zweifelsfall bitten wir um Rückfrage. Soweit in der Medienliste feste Stoffe genannt werden, sind deren wäßrige Lösungen bzw. Suspensionen gemeint.

Zeichenerklärung für Dichtungsmaterial:

- O nicht geeignet

Edelstahl 316 (V4A): 1.4401, 1.4404, 1.4408, 1.4435, 1.4436, 1.4571

Edelstahl 304 (V2A): 1.4301, 1.4305, 1.4541

für metallische Werkstoffe und Kunststoffe:

- □ praktisch beständig, Abtragung bis 2,4 g/m/Tag
- V wenig beständig, Abtragung 24-72 g/m√Tag
- O nicht beständig, Abtragung über 72 g/mVTag

Medium	Chemische		ntration und		ungsm	ateria l		Edels	stah l	Kui	nststof	fe			
	Formel		ratur(Kp=Siedepunk		\	NDD	- EDDA	4 010	004			۸ ۲		VO DV	/DE DOM
Acaton	CH ₃ COCH ₃	%	°C 20	PIFE		O	EPDM	1 316	304	PU	R P		PE P	VC PV	DF POM
Aceton			20	· · · · · · · · · · · · · · · · · · ·	0		· · · · · · · · · · · ·	H						<u>U</u>	
Acetylen	C ₂ H ₂	10						<u></u>							
Alaun	KAI(SO ₄) ₂	10	20	<u></u>	<u></u>	9		<u></u>							
Alaun	KAI(SO ₄) ₂	10	100						\Diamond						
Aluminiumacetat	(CH ₃ COO) ₃ Al				0			<u></u>	<u></u>						
Aluminiumäthylat	AI(OC ₂ H ₅) ₂				0			<u></u>							
Aluminiumchlorat	AI(CIO 3)3				<u>O</u>			<u></u>							
Aluminiumfluorid	AIF ₃			Щ	<u></u>			0	O					ш	
Aluminiumoxyd	A l ₂ O ₃			. <u></u>	0			<u></u>							
Ameisensäure	HCOOH	10	20		<u></u>	Q	<u></u>								
Ameisensäure	HCOOH	10	100		Q	Ō		\rightarrow							. O
Ameisensäure	HCOOH	100	20		Q	Q				Q	O.	\triangle	<u> </u>		O
Ameisensäure	HCOOH	100	100		0	0	0	\Diamond	0	0	0		0		0
Ammoniak	NH ₃	10	20			0									
Ammoniumhydroxyd	NH ₄ OH	10	20												
Ammoniumhydroxyd	NH ₄ OH	10	100												
Ammoniumbicarbonat	(NH ₄)HCO ₃				0										
Ammoniumch l orid	NH ₄ CI	5	20												
Ammoniumch l orid	NH ₄ CI	10	20												
Ammoniumch l orid	NH ₄ CI	10	100												
Ammoniumchlorid	NH ₄ CI	50	20						0						
Ammoniumdiphosphat	(NH ₂) ₂ HPO ₄														
Ammoniumcarbonat	(NH ₄) ₂ CO ₃		Кр		0										
Ammoniumnitrat	NH ₄ NO ₃		Кр												
Ammoniumsulfat	(NH ₄) ₂ SO ₄		Кр												
Anilin	C ₆ H ₅ NH ₂					0	∇			\circ	\Diamond		∇	∇	
Arsensäure	H ₃ AsO ₄										×				
Asphalt						O	0								
Benzin				$\overline{\sqcap}$		Ö						∇	0	П	
Benzol	C ₆ H ₆					Ö	Ö			0			∇	∇	∇
Bier	90.0														¥
Bleiacetat (Bleizucker)	Pb(CH3COO) 2	100	Kp		Ō										
Bleiarsenat	Pb ₈ (AsO ₄) ₂				Ö										
Bleichlösung (Chlorkalk)	1 13(//30/4/2					0		\Diamond	\Diamond	0	∇		∇		<u> </u>
Borax	Na ₂ B ₄ O ₇ 10H ₂ 0	`````````````````												П	
Borsäure	H ₃ BO ₃	ر 4	20						<u></u>						
		4		· · · · · · · · · · · · · · · · · · ·											
Borsäure	H₃BO₃		100						<u></u>						
Borsäure	H ₃ BO ₃	100	100	<u> </u>		0		<u></u>	<u>.</u>						
Butan	C ₄ H ₁₀			<u></u>			O	<u></u>	<u></u>	<u> </u>					
Buttermilch	011 0000 11		20		0			<u></u>							
Butylacetat	CH ₃ COOC ₄ H ₉			<u></u>	O.	O		<u> </u>		\mathcal{O}		\mathcal{O}	<u> </u>	O	
Butylalkohol	C ₄ H ₉ OH			<u> </u>	<u>O</u>			<u> </u>		0					
Calciumbisulfit	Ca(HSO ₃) ₂		20												
Calciumbisulfit	Ca(HSO ₃) ₂		200	<u></u>		<u>O</u>		<u></u>				<u></u>		<u></u>	<u></u>
Calciumchlorid	CaCl ₂		20												
Calciumchlorid	CaCl ₂		100					\Diamond							
Calciumhydroxid (Kalkmilch)	Ca(OH) ₂														
Calciumhypochlorid	Ca(CIO) 2					0		\Diamond							
Calciumsulfat	CaSO ₄				0										

Medium	Chemische Formel		ntration und atur _{(Kp=Siedepu}		tungsn	nateria	al	Ede	elstahl	Kur	nststof	fe			
		%	°C	PTFE	Viton	NBR	EPDM	316	304	PUR	PA	PE	PVC	PVDF	POM
Chlor, trocken	Cl ₂		20			0				0	0	0	0		
Chlor, trocken	Cl ₂		80			0				0	0	0	0		
Chloroform	CHCl ₃		20			0	0			0	∇	0	0		0
Chlorsulfonsäure	HOSO ₂ CI		Кр		0	0	0								
Chlorwasserstoffdämpfe, trocken			20					∇	0	\Diamond	0		\Diamond		
Chromsäure	H ₂ CrO ₄	10	20			0	0		O 	Ö	Ō	\Diamond	∇		0
Chromsäure	H ₂ CrO ₄	10	Кр			0	0		\Diamond	0	0			∇	0
Chromsäure	H ₂ CrO ₄	50	20			0	0		\Diamond	0	0				0
Clophen T 64					0	0	0								
Cyankaliumlösung	KCN	5	20		Ō	Ō	Ō								
Dampf (Wasserdampf)					Ŏ	Ō									
Diazotierungsbad (schwach sauer)			20		Ö			\Diamond							
Diazotierungsbad (schwach sauer)			80		Ö			\Diamond							
Dieselöl			20		<u> </u>		0		П	П	П	\triangle	\triangle		П
Diphyl					O							×	Y		
Dowtherm A					\circ	0	0								
	CLLCOOLL		20		0	0	0		_						∇
Esessig	CH₃COOH		20												<u>* .</u>
Erdgas	011 00011	10					O				ш	ш		<u>.</u>	
Essigsäure	CH₃COOH	10	20		0	0								<u></u>	
Essigsäure		10	Kp		O	\bigcirc	<u>o</u>								
Essigsäure		50	20		Q	O.			··· <u>Ö</u> ···						
Essigsäure		50	Кр		Q	Q	Q		\Diamond						
Essigsäure		80	20		0	0	0								0
Essigsäure	CH₃COOH	80	Кр		0	0	0		∇						
Ethan	C ₂ H ₆						0								
Ethanol	C ₂ H ₅ OH				0	0	0								
Ethyläther	C ₂ H ₅ OC ₂ H ₆				0	0	0								
Ethylacetat	CH ₃ COOC ₂ H ₅		Кр		0	0	0							0	
Ethylen	C ₂ H ₄														
Ethylenchlorid (Dichlorethan)	(CH ₂ CI) ₂	20				0	0								
Farbflotte, alkalisch oder neutral			20		0										
Farbflotte, alkalisch oder neutral			Kp		Ö										
Farbflotte, organisch sauer			20		Ö										
Farbflotte, organisch sauer			Kp		O										
Farbflotte, schwach schwefelsauer	H ₂ SO ₄ unter 0,3	0/_	Кр	<u></u>	Ö										
Farbflotte, stark schwefelsauer	H ₂ SO ₄ üher 0,3		20		Ö										
	H ₂ SO ₄ über 0,3							·							
Farbflotte, stark schwefelsauer	T ₂ SO ₄ uper 0,3	70	Kp		<u> </u>			<u>Y</u>							
Fettsäuren ab C6						\mathcal{O}	<u> </u>		<u> </u>		~~		····	<u>U</u>	
Formaldehyd	HCHO	40	. 20			\bigcirc					V		V		
Formaldehyd	HCHO	40	Kp			0									
Freon 12, Frigen 12				<u> </u>	<u> </u>			<u> Ш</u>	<u> </u>						
Gerbsäure	C ₇₆ H ₅₂ O ₄₆	10	20												
Gerbsäure	C ₇₆ H ₅₂ O ₄₆	10	Кр												
Gerbsäure	C ₇₆ H ₅₂ O ₄₆	50	. 20												
Glycerin	(CH ₂ OH ₂)CHOF	1	20												
Glycerin	(CH ₂ OH ₂)CHOF	1	100			0				0					
Harnstoff	(NH ₂) ₂ CO		20												
Hydroxylaminsulfat	(NH2OH)H2SO4	10	20												
Hydroxylaminsulfat	(NH ₂ OH)H ₂ SO ₄	10	Кр												
Kalisalpeter					0										
Kaliumacetat	CH₃COOH		Кр		O										
Kaliumdichromat	K ₂ Cr ₂ O ₇	25	20		Ö	Ö					∇				
Kaliumdichromat	K ₂ Cr ₂ O ₇		Kp		Ö	Ö	···· ·· ····				×				
Kaliumhydrogenartrat	COOH(CHOH) 2		20		Ö										
Kaliumhydrogenartrat (bei 100°, gesätt. Lsg.)	COOH(CHOH) ₂							<u></u>							
		50 50	Kp	· · · · · <u>· · · ·</u> · · · ·	O					∇					
Kaliumcarbonat (Pottoccho)	K ₂ CO ₃		20 Kn						Щ	V					
Kaliumcarbonat (Pottasche)	K₂CO₃		Kp												
Kaliumchlorat (bei 100°, gesätt. Lsg.)	KCIQ		Кр			O								ш	
Kaliumchromsulfat (Chromalaun)	KCr(SO ₄) ₂ 12H ₂ (. 20												
Kaliumchromsulfat (Chromalaun)	KCr(SO ₄) ₂ 12H ₂ (Kp		Ö			0							<u></u>
Kaliumhydroxyd (Kalilauge)	KOH	25	20		Ō										
Kaliumhydroxyd (Kalilauge)	KOH	25	Кр		Q										
Kaliumhydroxyd (Kalilauge)	KOH	50	20		0										
Kaliumhydroxyd (Kalilauge)	KOH	50	Кр		\bigcirc										

Medium	Chemische Formel		entration und eratur _{(Kp=Siedep}		ntungsr	nateria	al	Ede	elstahl	Kur	nststof	fe			
		%	°C		Viton	NBR	EPDM	316	304	PUR	PA	PE	PVC	PVDF	POM
Kaliumhypochlorit	KOCI		20		0			\Diamond							
Kaliumhypochlorit bis 20 g akt. Cl2/l	KOCI		40		0			\Diamond							
Kaliumjodid	KJ									\Diamond					
Kaliumnitrat	KNO ₃		20							\Diamond					
Kaliumnitrat	KNO ₃		Кр												
Kaliumpermanganat	KMnO ₄		20			0				∇	∇				
Kaliumpermanganat	KMnO ₄		Кр			Ö									
Kalkmilch	Ca(OH) ₂		20												
Kalkmilch	Ca(OH) ₂		Кр			\bigcirc	0								
Kohlendioxyd (trocken)	CO ₂		bis 60												
Kohlendioxyd (trocken)	CO ₂		400	<u>.</u>	Ö	0	Ö			Ö	Ö	Ö	Ö		
Kreosot	002		20		Ö	<u>V</u>					<u>V</u>				
• • • • • • • • • • • • • • • • • • • •					Ö										
Kreosot	(011,000), 0:		Kp												
Kupferacetat wss. Lsg.	(CH ₃ COO) ₂ Ct		20		0										
Kupferacetat wss. Lsg.	(CH ₃ COO) ₂ Cı	i	Kp		<u>.</u>			<u>-</u>							
Kupfersulfat (Kupfervitriol)	CuSO ₄		20												Ц
Kupfersulfat (Kupfervitriol)	CuSO ₄		Кр					<u> </u>							
Leinöl			20				Q						∇		
Leinöl			100			0									
Leuchtgas							0								
Luft, trocken															
M agnesiumsulfat	MgSO ₄		20												
Magnesiumsulfat	MgSO ₄		Kp												
Manganchlorid	MnCl ₂		20												
Manganchlorid	MnCl ₂		Кр												
Meerwasser (Seewasser)			20												
Meerwasser (Seewasser)			Кр						0						
Methylalkohol	CH ₃ OH		20		O										
Methylalkohol	CH₃OH		Kp		Ö										
Methylenchlorid	CH ₂ Cl ₂		20		Ö	0	0							\triangle	0
Methylenchlorid	OH ₂ OI ₂				Ö	\circ	0							∇	
• • • • • • • • • • • • • • • • • • • •			Kp	· · · · · · <u>· · · ·</u> · · · ·										<u>V</u>	<u>V</u>
Methylethylketon (Butanon)	CH ₃ COC ₂ H ₅		Кр		O			<u></u>							
Milch	OLL 000N-						0	 						 	
Natriumacetat	CH₃COONa				0			<u></u>							
Natriumhydroxyd (Natronlauge)	NaOH	20	20		<u> </u>	<u> </u>									Ц
Natriumhydroxyd (Natronlauge)	NaOH	20	Кр		Ŏ	Ŏ			<u>Ş</u>						
Natriumhydroxyd (Natronlauge)	NaOH	35	20		Ŏ	Ö			<u>\$</u>						Ц
Natriumhydroxyd (Natronlauge)	NaOH	35	Кр		<u> </u>	0	<u></u>		∇						<u></u>
Natriumkarbonat (Sodalösung, kaltges.)	NaCO₃		20		. Q										
Natriumkarbonat (Sodalösung)	Na ₂ CO ₃		Kp		0										
Natriumsulfat	Na ₂ SO ₄														
Öle (Schmieröle, mineralisch)			20												
Öle (vegetarisch)			20										\Diamond		
Ölsäure	C ₁₇ H ₃₃ COOH				0								\Diamond		
Oxalsäure	COOHCOOH					0							∇	∇	
Pentylacetat	CH₃COOC 5H	11			0										
Petroleum			20		0		0								
Phenol (Karbolsäure)	C ₆ H ₅ OH					0	Ö		\Diamond	\circ	\circ	\Box	\circ	\Diamond	0
Phosphorsäure	H₃PO₄	10	20			<u>v</u>			Ď		· · · · · · · · · · · · · · · · · · ·				
Phosphorsäure	H ₃ PO ₄	10	Кр												···· · ····
Phosphorsäure	H ₃ PO ₄	50	20												
									∇						
Phosphoraëure	H₃PO₄	50	Kp					\Diamond		∇					
Phosphorsäure	H₃PO₄	80	20							<u>V</u>	0	\mathcal{O}			
Phosphorsäure	H ₃ PO ₄	80	Kp	<u>P</u>				<u>.</u>	0	O .	0	0			
Propan	C ₃ H ₈		20			<u> </u>	<u> </u>	<u>-</u>		\triangle					
Quecksilber	Hg		20					<u></u>					∇	<u> </u>	
Quecksilber(II)chlorid (Sublimat)	HgCl ₂		20					<u></u>					$\overline{\nabla}$		
Quecksilber(II)nitrat	Hg(NO ₃) ₂		20		0								∇		
S alicylsäure	C ₆ H ₄ OHCOOF		20												
Salpetersäure	HNO ₃	10	20			0	0			0	0	\Diamond	∇		0
Salpetersäure	HNO₃	10	Кр			0	0			0	0		0		0
Salpetersäure	HNO 3	40	20			0	0			0	0		0		0
Salpetersäure	HNO ₃	40	Кр			0	0			0	0		0		0

Medium		Konzentration emperatur _{(Kp=}			tungsn	nateria	ıl	Ede	elstahl	Kur	nststof	fe			
				PTFE	Viton	NBR	EPDM	316	304	PUR	PA	PE	PVC	PVDF	POM
Salpetersäure	HNO ₃ k	ionz. ł	Кр			0	0	\Diamond		0	0		0	0	0
Salzsäure	HCI 1	0 2	20							\Diamond	0		\Diamond		0
Salzsäure	HCI 2	20 5	50					\Diamond			0				0
Salzsäure	HCI k	onz. 2	20					\Diamond		\Diamond	0		\Diamond		0
Sauerstoff	O ₂	2	20												
Schwefeldioxyd	SO ₂				0	0				∇			\Diamond		0
Schwefelige Säure (kalt) gesätt. Lsg.	H ₂ SO ₃					0									
Schwefelkohlenstoff	CS ₂	2	20			0	0						0		
Schwefelsäure	H ₂ SO ₄ 1	2	20		0	0			\Diamond	\Diamond	0		∇		
Schwefelsäure	H ₂ SO ₄ 1	0 2	20		0	0			∇	\Diamond	0		∇		
Schwefelsäure	H ₂ SO ₄ 9	0 2	20		0	0	0		∇		0		0		0
Schwefelsäure		ionz. 2	20		0	0	0				0		0	0	0
Schwefelwasserstoff, Gas, trocken	H ₂ S	2	20		0	0									
Schwefelwasserstoff, Gas, feucht	H ₂ S	2	20		0	0									
Seifenlösung										\Diamond					
Siliconöl															
Sole	NaCl	2	20		0			\Diamond							
Spinnbäder bis 10%	H ₂ SO ₄	8	30		0				∇						
Stärkelösung															
Stearinsäure	C ₁₇ H ₃₅ COOH										\Diamond	0			
Stickstoff	N ₂														
Sulfitlauge (frische Kocher-, Ablauge)	Ca(HDO ₃) ₂	2	20												
Sulfitlauge (frische Kocher-, Ablauge)	Ca(HDO ₃) ₂	8	30						∇						
Teer (neutral)			180			0	0			0	0	0	0		
Terpentinöl		2	20			0	0			0		∇	∇		
Tetrachlorkohlenstoff	CCI ₄					0	0			∇		0	0		
Toluol	C ₆ H ₅ CH ₃	2	20		\Diamond	0	0			0		0	0		
Trichlorethylen	C ₂ HCl ₃					0	0			0	\Diamond	0	0		∇
Wasser (Süß- und Trinkwasser)	H ₂ O														
Wasserglas(K- und Na-Silikat)	$K_2SiO_3Na_2HCI_3$									∇					
Wasserstoff	H ₂														
Wasserstoffperoxyd	H ₂ O ₂	2	20		0	0				\Diamond			∇		\Diamond
Wasserstoffperoxyd	H ₂ O ₂		50		0	0									
Wärmeträgeröle					0										
Weinessig		2	20												
Weinsäure	(CHOHCOOH) 2	2	20												
X ylol	C ₆ H ₄ (CH ₃) ₂	2	20			0	0			0		0	0		
Z itronensäure	(CH ₂ COOH) ₂ C(O	H)COOH 20)							\Diamond					
Zitronensäure	(CH ₂ COOH) ₂ C(O	H)COOH Kp	р												
Zuckerlösung		2	20												
Zuckerlösung		8	30												

Dichtwerkstoffe (Rahme	endaten)		
Werkstoff	Handelsname*	Temperaturbereich °C	Eigenschaften
NBR (Acrynitril-Butadien-Kautschuk)	Perbunan	-10°C bis +80°C	Elastischer Standardwerkstoff für neutrale Medien wie Luft, Öl und Wasser. Gut beständig gegen mechanische Belastungen.
EPDM(Ethylen-Propylen-Kautschuk)		-20°C bis + 130°C	Beständig gegen Laugen und Säuren mittlerer Konzentration, Wasse Heißwasser und Dampf. Nicht beständig bei Ölen und Fetten.
FKM/FPM(Fluor-Kautschuk)	Viton	-20°C bis +180°C	Elastomer mit hoher Temperatur- und Witterungsbeständigkeit. Für viele Säuren, Basen, Kraftstoffe und Öle (auch synthetische) geeignet. Unbeständig bei Heißwasser und Dampf.
PTFE(Polytetrafluor-Ethylen)	Teflon	-180°C bis +200°C	Beständig gegen fast alle Chemikalien, auch bei höheren Temperaturen.
POM (Polyacetal)	Delrin	-10°C bis +80°C	Hohe Druck- und Abriebfestigkeit, geringe Wasseraufnahme, empfehlenswert bei der Verwendung mit Hydraulikölen.
PA (Polyamid)	Nylon (Rilsan)	-30°C bis +115°C	Hohe Verschleiß und Abreibfestigkeit. Sehr gute Beständigkeit gegenüber Kraftstoffen, Ölen, Fetten und Lösungmitteln.

^{*} Namen und Bezeichnungen sind z. T. eingetragene Warenzeichen der jeweiligen Hersteller

Tabellen

Umrec	hnungst	tabelle v	on Druc	ckeinhei	ten							
Einheit	bar	mbar	kPa	MPa	psi	mWS	ft HO	in. H ₂ O	mmHg	Torr	in. Hg	kg/cm ²
1 bar	1	1000	100	0,1	14,5038	10,1972	33,4553	401,463	750,064	750,064	29,53	1,01972
1 mbar	0,001	1	0,1	0,0001	0,0145	0,0102	0,03346	0,40146	0,75006	0,75006	0,02953	0,00102
1 kPa	0,01	10	1	0,001	0,14504	0,10197	0,33455	4,01463	7,50064	7,50064	0,2953	0,0102
1 MPa	10	10000	1000	1	145,04	101,97	334,55	4014,63	7500,64	7500,64	295,3	10,1972
1 psi	0,06895	68,9476	6,89476	0,0068948	1	0,70307	2,30666	27,6799	51,7151	51,7151	2,03602	0,07031
1 mWS	0,09807	98,0665	9,80665	0,0098067	1,42233	1	3,28084	39,3701	73,5561	73,5561	2,8959	0,1
1 ft H ₂ O	0,02989	29,8907	2,98907	0,0029891	0,43353	0,3048	1	12	22,4199	22,4199	0,88267	0,03048
1 in. H ₂ O	0,00249	2,49089	0,24909	0,0002491	0,03613	0,0254	0,08333	1	1,86833	1,86833	0,07356	0,00254
1 mmHg	0,00133	1,33322	0,13332	0,0001333	0,01934	0,0136	0,0446	0,53524	1	1	0,03937	0,00136
1 Torr	0,00133	1,33322	0,13332	0,0001333	0,01934	0,0136	0,0446	0,53524	1	1	0,03937	0,00136
1 in. Hg	0,03386	33,8639	3,38639	0,0033864	0,49115	0,34532	1,13293	13,5951	25,4	25,4	1	0,03453
1 kg/cm ²	0,98067	980,665	98,0665	0,0980665	14,2233	10	32,8084	393,701	735,561	735,561	28,959	1

Beispiel: 5 MPa = 5 x 145,04 = 725,2 psi

Umrechnungstabelle von Krafteinheiten

Einheit	N	kN	MN	р	kp
1 N	1	10°	10⁴	102	0,102
1 kN	10³	1	10.3	1,02 x 10°	102
1 MN	10°	10°	1	1,02 x 10°	1,02 x 10⁵
1 p	0,00981	9,81 x 10 °	9,81 x 10 ⁻³	1	10³
1 kp	9,80665	9,81 x 10 ³	9,81 x 10 ⁻⁸	10³	1

Volur	Volumenstromberechnung												
Symbol	Beschreibung	Bemerkung	Dimension	Druckluft unterkritisch									
Q	Volumenstrom		l/min	$[\Delta P < 0.5 \cdot (1 + P_1)]: Q \approx 27 \cdot K_V \cdot \sqrt{\Delta P \cdot (1 + P_2)}$									
K_V	Durchflußkoeffizient		I/min	Druckluft überkritisch									
P ₁	Eingangsdruck		bar	$[\Delta P > 0.5 \cdot (1 + P_1)]: Q \approx 13.4 \cdot K_V \cdot (1 + P_1)$									
P_2	Ausgangsdruck		bar	$[\Delta P > 0.5 \cdot (1 + P1)]: Q \approx 13.4 \cdot N_V \cdot (1 + P1)$									
ΔΡ	Differenzdruck	P ₁ -P ₂	bar	Wasser									
				$Q=K_V\cdot\sqrt{\Delta P'}$									

Leckagerate (Richtwerte)

Leckage-Ø	natürliche Größe	Leckagerate bei 6 bar	ca. Leistungsbedarf Kompressor
1 mm	•	0,06 m³/min	0,3 kW
3 mm	•	0,6 m³/min	3,1 kW
5 mm	•	1,6 m³/min	8,3 kW
10 mm		6,3 m³/min	33 kW

Luftverbrau	ıch eines Pneu	ımatikzylind	ers, einfach	er Hub, 100	mm ausfahr	end	(Normliter)
Kolben Ø	2 bar	3 bar	4 bar	5 bar	6 bar	7 bar	8 bar
8	0,02	0,02	0,03	0,03	0,04	0,04	0,05
10	0,03	0,03	0,04	0,06	0,07	0,08	0,09
12	0,03	0,04	0,06	0,07	0,08	0,09	0,10
16	0,06	0,08	0,10	0,12	0,14	0,16	0,18
20	0,09	0,13	0,16	0,19	0,22	0,25	0,28
25	0,15	0,20	0,25	0,29	0,34	0,39	0,44
32	0,24	0,33	0,40	0,48	0,57	0,63	0,72
40	0,38	0,51	0,63	0,75	0,85	1,05	1,13
50	0,60	0,79	1,01	1,20	1,40	1,56	1,76
63	0,97	1,27	1,58	1,89	2,20	2,54	2,80
80	1,52	2,04	2,52	3,04	3,51	4,01	4,51
100	2,38	3,17	3,97	4,75	5,53	6,34	7,13
125	3,72	4,96	6,21	7,42	8,64	9,91	11,14
160	6,09	8,12	10,16	12,16	14,16	16,23	18,25
200	9,52	12,68	15,88	19,00	22,12	25,36	28,52
250	14,88	19,81	24,81	29,69	34,56	39,63	44,56

Dr	uck-K	raft-T	abelle [·]	für Pne	eumatil	kzylinc	ler (für	Rückh	ub)*						
							Betr	iebsdruck	in bar						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Kolb	en-Ø						K	o l benkraft	in N						
mm															
8	4,5	9,0	13,6	18,1	22,6	27,1	31,7	36,2	40,7	45,2	49,8	54,3	58,8	63,3	67,9
10	7,1	14,1	21,2	28,3	35,3	42,4	49,5	56,5	63,6	70,7	77,8	84,8	91,9	99,0	106,0
12	10,2	20,4	30,5	40,7	50,9	61,0	71,3	81,4	91,6	101,0	112,0	122,0	132,0	143,0	153,0
16	18,1	36,2	54,3	72,4	90,5	109,0	127,0	145,0	163,0	181,0	199,0	217,0	235,0	253,0	271,0
20	28,3	56,5	84,8	113,0	141,0	170,0	198,0	226,0	254,0	283,0	311,0	339,0	368,0	396,0	424,0
25	44,2	88,4	133,0	177,0	221,0	265,0	309,0	353,0	398,0	442,0	486,0	530,0	574,0	619,0	663,0
32	72,4	145,0	217,0	290,0	362,0	434,0	507,0	579,0	651,0	724,0	796,0	869,0	941,0	1010,0	1090,0
40	113,0	226,0	339,0	452,0	565,0	679,0	792,0	905,0	1020,0	1130,0	1240,0	1360,0	1470,0	1580,0	1700,0
50	177,0	353,0	530,0	707,0	884,0	1060,0	1240,0	1410,0	1590,0	1770,0	1940,0	2120,0	2300,0	2470,0	2650,0
63	281,0	561,0	842,0	1120,0	1400,0	1680,0	1960,0	2240,0	2520,0	2810,0	3090,0	3370,0	3650,0	3930,0	4210,0
80	452,0	905,0	1360,0	1810,0	2260,0	2710,0	3170,0	3620,0	4070,0	4520,0	4980,0	5430,0	5880,0	6330,0	6790,0
100	707,0	1410,0	2120,0	2830,0	3530,0	4240,0	4950,0	5650,0	6360,0	7070,0	7780,0	8480,0	9190,0	9900,0	10600,0
125	1100,0	2210,0	3310,0	4420,0	5520,0	6630,0	7730,0	8840,0	9940,0	11000,0	12100,0	13300,0	1440,0	15500,0	16600,0
160	1810,0	3620,0	5430,0	7240,0	9050,0	10900,0	12700,0	14500,0	16300,0	18100,0	19900,0	21700,0	23500,0	25300,0	27100,0
200	2830,0	5650,0	8480,0	11300,0	14100,0	17000,0	19800,0	22600,0	25400,0	28300,0	31100,0	33900,0	36800,0	39600,0	42400,0
250	4420,0	8840,0	13300,0	17700,0	22100,0	26500,0	30900,0	35300,0	39800,0	44200,0	48600,0	53000,0	57400,0	61900,0	66300,0

^{*} Reibung im Zylinder (5-25%) wurde nicht berücksichtigt

Druck- und Zugkrafttabellen für Hydraulik-Zylinder Druckkraft Zugkraft 20 20 19 19 18 18 130/80 17 17 100 16 16 15 15 13 13 Druckkraft (Tonnen) Zugkraft (Tonnen) 12 11 10 9 63 60 60/30 63/40 50 40 32 30 25 40/25 90 110 130 150 170 190 210 90 110 130 150 170 190 210 Betriebsdruck (bar) Betriebsdruck (bar)

Alle Angaben verstehen sich als unverbindliche Richtwerte! Für nicht schriftlich bestätigte Datenauswahl übernehmen wir keine Haftung.

Schutzarten nach VDE 0470 / EN 60529

erste	Schutzgrad für	zweite	Schutzgrad für
Kennziffer	Berührungs- und Fremdkörperschutz	Kennziffer	Wasserschutz
0	kein Schutz	0	kein Schutz
1	Schutz gegen große Fremdkörper Ø > 50 mm	1	Schutz gegen senkrecht fallendes Tropfwasser
2	Schutz gegen mittelgroße Fremdkörper Ø > 12 mm	2	Schutz gegen schräg fallendes Tropfwasser
3	Schutz gegen kleine Fremdkörper Ø > 2,5 mm	3	Schutz gegen Sprühwasser
4	Schutz gegen kornförmige Fremdkörper Ø > 1 mm	4	Schutz gegen Spritzwasser
5	Schutz gegen Staubablagerung	5	Schutz gegen Strahlwasser
6	Schutz gegen Staubeintritt	6	Schutz bei Überflutung
		7	Schutz beim Eintauchen
		8	Schutz beim Untertauchen

Rohrabmessungen

				metrische
NW		DIN 11850-R2	ISO	Abmessungen*
mm	Zoll	Außen-Ø (mm)	Außen-Ø (mm)	in mm
10	3/8"	13	17,2	12 x 1,0
15	1/2"	19	21,3	18 x 1,5
20	3/4"	23	26,9	23 x 1,5
25	1"	29	33,7	28 x 1,5
32	1 1/4"	35	42,4	35 x 1,5
40	1 1/2"	41	48,3	43 x 1,5
50	2"	53	60,3	54 x 2,0
65	21/2"	70	76,1	69 x 2,0
80	3"	85	88,9	84 x 2,0
100	4"	104	114,3	104 x 2,0
125	5"	129	139,7	129 x 2,0
150	6"	154	168,3	154 x 2,0
200	8"	204	219,1	204 x 2,0
250	10"		273,0	254 x 2,0
300	12"		323,9	304 x 2,0
350	14"		355,6	354 x 2,0
400	16"		406,4	406 x 3,0
450	18"		457,2	
500	20"		508,0	
600	24"		609,6	
700	28"		711,2	
800	32"		812,8	
900	36"		914,4	
1000	40"		1016,0	

Nennweite = lichte Weite (abhängig von Wanddicke)

Werkstoffe (chemische Zusammensetzung)

Werkstoff Nr. (AISI)	C % max.	Si % max.	Mn % max.	Cr %	Mo %	Ni %	Ti (min.) %
1.4301 (304)	0,07	1,0	2,0	17 - 20		8,5 - 10	
1.4306 (304 L)	0,03	1,0	2,0	17 - 20		10 - 12,5	
1.4541 (321)	0,10	1,0	2,0	17 - 19		9 - 11,5	5 x C
1.4401 (316)	0,07	1,0	2,0	16,5 - 18,5	2 - 2,5	10,5 - 13,5	
1.4436 (316)	0,07	1,0	2,0	16,5 - 18,5	2 - 3	11,5 - 14	
1.4404 (316 L)	0,03	1,0	2,0	16,5 - 18,5	2 - 2,5	11 - 14	
1.4571 (316 Ti)	0,10	1,0	2,0	16,5 - 18,5	2 - 2,5	10,5 - 13,5	5 x C

Nennweitenbestimmung eines Innensechskants

SW	DN
2	2,1
2,5	2,6
3	3,1
3,5	3,6
4	4,2
4,5	4,7
5	5,2
6	6,3
8	8,4

Druck-Dampitabelle								
bar	°C (Celsius)	°K (Kelvin)	°F (Fahrenheit)	bar				
1	99	372	212	7				
1,5	111	385	240	8				
2	120	393	248	9				
3	133	406	270	10				

416

424

431

bar	°C (Celsius)	°K (Kelvin)	°F (Fahrenheit)
7	164	437	330
8	170	442	342
9	174	448	350
10	179	452	356
12	187	460	365
14	194	467	378
16	200	473	392

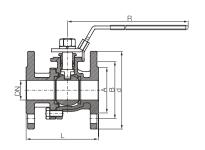
Gewind	ebezeichnung	gen		
Kürzel	Beispiel	Beschreibung	Innengewinde	Außengewinde
M*	M 8 x 1	zylindrisches, metrisches Gewinde nach DIN 13	ja	ja
M (keg)*	M 8 x 1 (keg.)	kegliges, metrisches Gewinde nach DIN 158	ja	ja
G**	G ¹ /8"	zylindrisches Whitworth-Rohrgewinde nach DIN/ISO 228/DIN 259	ja	ja
R**	R 1/8"	kegliges Whitworth-Rohrgewinde nach DIN 2999/DIN EN 10226-1/ISO 7-1	nein	ja
Rp**	Rp 1/8"	zylindrisches Whitworth-Rohrgewinde nach DIN 2999/DIN EN 10226-1/ISO 7-1	ja	nein
NPT	NPT 1/8"	amerikanisches, kegliges Gewinde nach ANSI/ASME 1.20-1-1983	ja	ja
UNF, UN	⁷ /16" - 20 UNF	amerikanisches, zylindrisches Gewinde nach SAE J 514/SAE J 1926	ja	ja

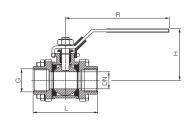
290

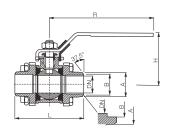
305

4

5

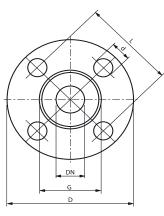

Genormte Einbaulängen von Armaturen


143


151

158

(DIN 3202)


	1/2"	3/4"	1"	1 ¹ /4"	1 1/2"	2"	2 1/2"	3"	4"	5"	6"	8"
	DN 15	DN 20	DN 25	DN 32	DN 40	DN 50	DN 65	N 80 D	N 100 DN	1125 DN	150 DN	200
Flanschanschlüsse												
DIN 3202-F1	130	150	160	180	200	230	290	310	350	400	480	600
DIN 3202-F4	115	120	125	130	140	150	170	180	190	200	210	230
DIN 3202-F5					240	250	270	280	300	325	350	400
Innengewinde												
DIN 3202-M3	75	80	90	110	120	140	185	205	240			
Anschweißenden												
D I N 3202-S13	75	90	100	110	125	150	190	220	270			

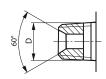
^{*} miteinander kombinierbar
** miteinander kombinierbar (Achtung: Aufgrund unterschiedlicher Toleranzen lässt sich ein zylindrisches G-Außengewinde nicht immer in ein paralleles Rp-Innengewinde einschrauben.)

Flanschabmessungen

						Anzahl	Stärke
Flansch	DN	G	D	L	Ød	Ød	Flansch
DIN*	15	45	95	65	14	4	14
PN 10 (bis DN 200)	20 25	58 68	105 115	75 85	14 14	4	14 14
PN 16 (bis bit 200)	32	78	140	100	18	4	18
* (Werte in Klammern	40	88	150	110	18	4	18
gelten für PN 10)	50	102	165	125	18	4	18
	65	122	185	145	18	4	18
	80	138	200	160	18	8 (4)*	18
	100	158	220	180	18	8	18
	125	188	250	210	18	8	18
	150	212	285	240	22	8	22
	200	268	340	295	22	12 (8)*	22
	250 300	320 378	405 460	355 410	26 26	12 12	26 26
	15	45	95	65	14	4	16
OIN	20	58	105	75	14	4	18
PN 25 (bis DN 150)	25	68	115	85	14	4	18
PN 40	32	78	140	100	18	4	18
	40	88	150	110	18	4	18
	50	102	165	125	18	4	20
	65	122	185	145	18	8	22
	80	138	200	160	18	8	24
	100	162	235	190	22	8	24
	125	188	270	220	26	8	26
	150	218	300	250	26	8	28
	200	285	375	320	30	12 4	34 11,2
ANSI	15 20	35,1 42,9	88,9 98,6	60,5 69,9	15,7	4 4	
3 16.5	25	50,8	108,0	79,2	15,7 15,7	4	12,7 14,2
Class 150	32	63,5	117,3	88,9	15,7	4	15,7
Class 150	40	73,2	127,0	98,6	15,7	4	17,5
	50	91,9	152,4	120,7	19,1	4	19,1
	65	104,6	177,8	139,7	19,1	4	22,4
	80	127,0	190,5	152,4	19,1	4	23,9
	100	157,2	228,6	190,5	19,1	8	23,9
	125	185,7	254,0	215,9	22,4	8	23,9
	150	215,9	279,4	241,3	22,4	8	25,4
	200	269,7	342,9	298,5	22,4	8	28,4
	250	323,9	406,4	362,0	25,4	12	30,2
ANG	15	35,0	95,2	66,5	15,7	4	14,2
ANSI B 16.5	20	42,9	117,3	82,6	19,1	4	15,7
Class 300	25 32	50,8 63,5	124,0 133,4	88,9 98,6	19,1 19,1	4	17,5 19,1
Class 500	40	73,2	155,4	114,3	22,4	4	20,6
	50	91,9	165,1	127,0	19,1	8	22,4
	65	104,6	190,5	149,4	22,4	8	25,4
	80	127,0	209,6	168,1	22,4	8	28,4
	100	157,2	254,0	200,2	22,4	8	31,8
	125	185,7	279,4	235,0	22,4	8	35,1
	150	215,9	317,5	269,7	22,4	12	36,6
	200	269,7	391,0	330,2	25,4	12	41,1
	250	323,9	444,5	387,4	28,4	16	47,8
	15	45	95	65	14	4	16
EN 1092-1*	20	58	105	75	14	4	18
PN 10 (bis DN 200)	25	68	115	85	14	4	18
PN 16	32	78	140	100	18	4	18
(Werte in Klammern gelten für PN 10)	40 50	88 102	150 165	110 125	18 18	4	18 18
geiten für PN 10)	65	102	185	145	18	8	18
	80	138	200	160	18	8	20
	100	158	220	180	18	8	20
	125	188	250	210	18	8	22
	150	212	285	240	22	8	22
	200	268	340	295	22	12 (8)*	24
	250	320	405	355	26	12	26
	300	378	460	410	26	12	28
	15	45	95	65	14	4	16
EN 1092-1	20	58	105	75	14	4	18
PN 25 (bis DN 150)	25	68	115	85	14	4	18
PN 40	32	78	140	100	18	4	18
	40	88	150	110	18	4	18
	50	102	165	125	18	4	20
	65	122	185	145	18	8	22
	80	138	200	160	18	8	24
	100	162	235	190	22	8	24
	125 150	188 218	270 300	220 250	26 26	8 8	26 28
	200	218	375	320	30	8 12	34
	250	345	450	385	33	12	38

Metrisches Gewinde	(M)		Zoll-Gewind	e (G/R)		
				Gangzahl		
Nennmaß	D	d	Nennmaß	auf 1 Zoll	D	d
M8x1	8,0	6,9	1/8"	28	9,7	8,6
M 10 x 1	10,0	8,9	1/4"	19	13,2	11,5
M 12 x 1	12,0	10,9	3/8"	19	16,7	15,0
M 12 x 1,5	12,0	10,4	1/2"	14	21,0	18,6
M 14 x 1,5	14,0	12,4	5/8"	14	22,9	20,6
M 16 x 1,5	16,0	14,4	3/4"	14	26,4	24,1
M 18 x 1,5	18,0	16,4	1"	11	33,3	30,3
M 20 x 1,5	20,0	18,4	11/4"	11	41,9	39,0
M 22 x 1,5	22,0	20,4	1 ¹ /2"	11	47.8	44,9
M 24 x 1,5	24,0	22,4	2"	11	59,6	56,7
M 26 x 1,5	26,0	24,4	21/2"	11	75,2	72,2
M 30 x 1,5	30,0	28,4	3"	11	87.9	84,9
M 30 x 2	30,0	27,8	4"			
M 36 x 1,5	36,0	34,4		11	113,0	110,1
M 36 x 2	36,0	33,8		11	138,4	135,4
M 38 x 1,5	38,0	36,4	6"	11	163,8	160,9
M 42 x 2	42,0	39,8				
M 45 x 1,5	45,0	43,3				
M 45 x 2	45,0	42,8				
M 52 x 1,5	52,0	50,4				
M 52 x 2	52,0	49,8				

metrisch / zöllig



NPT-Gewind	le	
	Gangzahl	
Nennmaß	auf 1 Zoll	D
NPT ¹ /8"	27	10,3
NPT ¹ /4"	18	13,7
NPT ³ /8"	18	17,2
NPT ¹ /2"	14	21,3
NPT ³ /4"	14	26,7
NPT 1"	11,5	33,4
NPT 1 ¹ /4"	11,5	42,2
NPT 1 ¹ /2"	11,5	48,3
NPT 2"	11,5	60,3
NPT 2 ¹ / ₂ "	8	73,0
NPT 3"	8	88.9

l I	7	À
N	V1	
l W	ГІ	

Amerikanisches Standardaußengewinde NPT

JIC -Gewinde	/ UNF-/ UN	-Gewinde				
	Gangzahl				Kenngröße	Kenngröße
Nennmaß	auf 1 Zoll	Klasse	D	d	JIC	SAE
5/16	24	UNF	7,9	6,8	2	2
3/8	24	UNF	9,5	8,4	3	3
⁷ /16	20	UNF	11,1	9,8	4	4
1/2	20	UNF	12,7	11,4	5	5
9/16	18	UNF	14,3	12,8	6	
5/8	18	UNF	15,9	14,4		6
3/4	16	UNF	19,1	17,4	8	8
7/8	14	UNF	22,2	20,3	10	10
1 ¹ /16	12	UN	27,0	24,8	12	
1 ¹ /16	14	UNS	27,0	25,1		12
1 ³ /16	12	UN	30,2	28,0	14	14
1 ⁵ /16	12	UN	33,3	31,1	16	16
1 ⁵ /8	12	UN	41,3	39,0	20	20
1 ⁷ /8	12	UN	47,6	45,4	24	24
21/2	12	UN	63,5	61,3	32	32
3	12	UN	76,2	74,0	40	40
31/2	12	UN	88,9	86,7	48	48

JIC / UNF / UN

JIC-Außengewinde

JIC-Innengewinde

UNF-/UN-Innengewinde

ORFS -Gewinde						
Gangzahl			Kenngröße			
Nennmaß	auf 1 Zoll	Klasse	D	d	ORFS	
⁹ /16	18	UNF	14,3	12,9	4	
¹¹ /16	16	UN	17,4	15,4	6	
¹³ /16	16	UN	20,5	18,6	8	
1	14	UNS	25,3	23,1	10	
1 ³ /16	12	UN	30,2	28,1	12	
1 ⁷ /16	12	UN	36,5	34,5	16	
1 ¹¹ /16	12	UN	42,7	40,6	20	
2	12	UN	50,8	48,8	24	

